Forecasting Variation Trends of Stocks via Multiscale Feature Fusion and Long Short-Term Memory Learning

نویسندگان

چکیده

Forecasting stock price trends accurately appears a huge challenge because the environment of markets is extremely stochastic and complicated. This persistently motivates us to seek reliable pathways guide trading. While Long Short-Term Memory (LSTM) network has dedicated gate structure quite suitable for prediction based on contextual features, we propose novel LSTM-based model. Also, devise multiscale convolutional feature fusion mechanism model extensively exploit relationships hidden in consecutive time steps. The significance our designed scheme twofold. (1) Benefiting from both long- short-term memories, can use given history data more adaptively than traditional models, which greatly guarantees performance financial series (FTS) scenarios thus profits trends. (2) diversify representation capture FTS essence fairly facilitates generalizability. Empirical studies conducted three classic sets, i.e., S&P 500, DJIA, VIX, demonstrated effectiveness stability superiority suggested method against few state-of-the-art models using multiple validity indices. For example, achieved highest average directional accuracy (around 0.71) employed sets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

the effect of teaching vocabulary through memory learning strategies on iranian intermediate efl learners long-term vocabulary retention

بسیاری از دبیران و دانش آموزان بر این باورند که یادگیری لغات آسان است و شیوه های مختلفی برای یادگیری وجود دارد گرچه یادآوری لغات پس از مدت طولانی بسیار دشوار و پرزحمت است . هدف از این تحقیق آن است که تاثیر استراتژی های حافظه بر روی نگهداری بلند مدت لغات در زبان آموزان خانم سطح متوسط در ایران را بررسی کند. قبل از شروع تدریس، آزمون تعیین سطحی به منظور داشتن زبان آموزان یک سطح برگزار شده و بر اساس...

Reinforcement Learning with Long Short-Term Memory

This paper presents reinforcement learning with a Long ShortTerm Memory recurrent neural network: RL-LSTM. Model-free RL-LSTM using Advantage( ) learning and directed exploration can solve non-Markovian tasks with long-term dependencies between relevant events. This is demonstrated in a T-maze task, as well as in a di cult variation of the pole balancing task.

متن کامل

Time Series Forecasting Based on Augmented Long Short-Term Memory

In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...

متن کامل

Bound feature combinations in visual short-term memory are fragile but influence long-term learning

We explored whether individual features and bindings between those features in VSTM tasks are completely lost from trial to trial or whether residual memory traces for these features and bindings are retained in long-term memory. Memory for arrays of coloured shapes was assessed using change detection or cued recall. Across trials, either the same colour-shape (integrated object) combinations w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Programming

سال: 2021

ISSN: ['1058-9244', '1875-919X']

DOI: https://doi.org/10.1155/2021/5113151